
 26th fyH⿰日月耳， 1945.
aubject mattier coakeined in the attanded traniation and an follownim

B．Oyptogrephio oourve at oki／ohs．
b．duatrion Cxyptographio Dept．
O．Epaeah De－acomaling at upamomzins．
a．mutang opeoah encyphering apporetum：
－Copher Machion E 40.
f．Solution of Japanese Diplowntio keseagra．
g．Th walution or polith itteoh uniacqu．

24th gept． 1945
DISHRTEXYTOM

5400a

19．obairwan
20．）8．ג．c．（2）
21．）
22．OAr．Beoon
23．It 901．－johnuton
24．Majar guman
25．It．Cdr．Marmon
26．Majow Coman
27．Lt．Fehl
20.$)$
30.

51．
T1acm pilan（4）
oony No， 23
No．（t）pagot． 9

11．）U．S．
12．）．，op－20－6（2）（via Lt．car．Manmion）
iy．G－2（ria Lt．Col．Kilisa）
14 ）
15．
16．）i．s．2．（3）（Fha Major Soman）
17．DIreator，S．I．D．USPET
（rient．col．Johnton）
18．cal howis poweli，uearar．

additionat

32．8．i．O．For Gept．Olmbure
35．Er．2winn

CRYPLAKALYITC CORRSES AT ONN/OII

Since about 1930, oxyptanayy'io coursee have been held at Chi for 6-monthly poxiods over the Finter. Hach new mamber of the staff had to take part in two conseoutive courses. In the first 6-monthly linter pariod, the fundamental systems of eubstitution methods were dealt $w i t h$, that is to say substitutions (sinple, 的ltiple, variable unit ((weohselstelifiger)), dyllabio), aubstitution gytams (pariodic and apariodio), bigram substitution ((Paaroaesaren)) and code-books.

In the seoond 6-monthly Wintex period, the bseic tranmposition systems were first doalt with (l00al transposition ((urstellung)), simple trensposition, transposition. With diagonald, acmb transposition and stenoils) and then the prinaipel rearpheting methods (oombinations of beaio aystems; rurther oubstitution, eubtreotors snd dumy reapphermente, ((Blender uabersohluesselung))).

The different onayphered texts mere worked on aiongeide preotioe-examples basea, on cerman op/L texte.

Two pariods of inistruation, each lasting two hours were hold each waek, so that in one helf-yaar there would be abolat 50 tro-hour periods. The number of partioipants veried considerabif from ond 6 -monthly period to another. Scme colureee wers attanded' by 3, others by as nany as 12 parsans and more. In the first years, Min. Bat. Fwiven direoted all the oourwes personally; Jator, FIENNBR and Dr. IrNDLAND divided this work between them. During the war these beginnersa oourses wera hold by Dr. HEMTHAND and Dr. HUETHENTATN.
onily the nevily engaged stepf of the eootions dealing With the various coluntries took part in these courses, Hembers of the oryptanalytio seotion, as soon as they joinod, were inmadiately instruoted at Chi for 2 to 4 months of their sarpioe period in fundanental and reagphering ayetems, so that after that period had elapsed they woula bs in a position to trokle unsolvę problems on their own;

In the sumpar of 1943, a coursis of advanoed atudy was instituted for the first timis. 8 capable doayphorers, who had shown siome oryptanalytio ability, were de tached frou thie seotions dealing with the verious countries and joined this courso, Three 2 -hour periods took place eaok. wook, in Summer and Finter. The duration of the coucse mas not firsa at the outset. Is'a resilit of the general situation, no mare instriotion was given

The brealding of regypherments wes worked at exclusively: At firsta the withemitioal beses (of oryptandyais)) wore worked through, for example, periatations, the theory of probabilities, olementary statistios, Then the relavant oryptanalytio problems were treated, solving of oonpromised text., investigation of indicator-groups, oubtraotor problems of genaral and partioular appitiontion, epoial solving of dowble-trunpositions sto. Machine ayphers wers also to have been deait with in this course. To conclude these theoretioal etudies, problams mare examined

Whioh had aotually occurred and then, when possible, the study of these was carried still further. Those taking part in the course were femilarised with the working of HOUHERTMF mahines and neohantoal aids to cryptanalyais. is study was also made of the rethods of breaking our own ayphers discovered by the cypher security people. In brief, this course was intended as instruation in oryptanalysis as it stood at the time.
Translator: J. M.E.

28/8/45.

Crypto office in Austria

Uritil the ansohiuss there was a cryptographio offioe in Vienna which collaboreted olosely with the Chanoeilory office of the Bund and dequphered diplomatio wessages. The hasid of this office was Hofrat Dr. SEIFFBry. Fua staff was small. Italy, Rownania, Greeoe, Jugoslavia, Bulgaria, Turkay, Poland and Caechoslovakia were the oountries dealt with. This office has worked in olose contact with "Chi" ((i,e, oky/Chi)) for many years. We do not know, however, in detail what this collaboration amounted to.

During tension between the two countries, the colleboration between the two "Ohi" offices was cualntained. when the Ansahluss wes effeoted, Ganeral FrgicIEBEL and Kin. Rat. FMENER brought the best personnel to Berlin. The following joinea "Chy": Hofrat Dr. SETMERT Who tras a Min. Rat. in Berlin, Dr. MiULIFR and Reg. Rat Dr. LOCKmR. Herr BAIUOIIC came to the Forsohungsamt; he oilly stayed a short time: with FA and was then taken over by the druy (In. 7). and for the list 4 months was ORR at. Ohi.

At Chi the above named were given the following tasks:-
Dr. SELFERT was speciallat on known codes and broke Polish,
Turkist, Greek and Vatican baisio books.
Dr. MADLER wes deputy head of the. Italion Section.
Dr. LOCNER was head of the Turkiah Section.
OKR BAHLOVIJ worked on Belkan Codes and ajphers.

Speech dengcrambling apparatus at LODFIGSFHIDE

There wae an intercept apparatus at Ludwigsfeide by which "enquphered" conversations between London and Faehington were pioked up in deoiphered form. The prinoiple of the enciphering ie unknown to us now, at any rate it was such a almele matter that when using a nev. key, this new key oould be found in a fow minutee. It was only neceesary to turn a few knobs until the spasoh became intelligible again.

The equiprent was constructed in accordance with information fron Fit Pruef 7 and in such a wey that it could still have been used if the key had been extended-but preserving the brisio principle. We do not knom if there wae a second épparatus at another station:In Germany of this or similer type. . No searet conversationa were allowed on the London-mashington. Iline. If the subeoribers ignered this regulation they were told ebout it through a "speaker". If neoessary, the conversation vas cut off.

Translator: M.G.O.

MUSTANG Speéch Enoypherment

In the Spring of 1945, a speeoh enoypherment epparatus, reoovered intact from a MUSTANG fighter, was eubmitted by the G.A.F. to certain mablere of the 3 branahee of the Armed'Foroee and OKH/Ohi at ADIMBSHORST near BERLIN. The deoision was taken on that occassion to hand the set over to fir pruef 7, for more detailed examination. The intention was to discover the degree of eecurity provided by the eet, and, if possiblo, to construct a eet which would enable us to listen in to the traffic.

The investigations into the eecurity, which fere conducted mainly by Dr. BUGGISGH and Dr. LOIZE, Were Inconsiusive, Only the folloring points pere established:

1) The RTGERSTEDP aypher prinoiple is used there are 9 subsoribers (sprechkpepfo).
2) The number of possible key settings is so great that the systematio examination of all keye would probably not lead to a solution.
3). It is always poseible to reconstruat the key-eetting from an intercepted ((aufgenomsenen)) isolliogram. It is doubtful, however, whether the solution can se reaohed in a short enough time for exploitation during the actual fighter. operation'concerned.

Translator: J.N.E.

/ayphor

Gyphor Liachine $\dot{Y}: 40$
Gypher machine 14.40 vas designed and constructed by Ob. Insp: FEENKER over the period•1937-1939, stter the designs had bein completed, fla pruef had 30 maohines built by the firm of Handerer in chemnitz. Howevery. as fer as we know, they were never used. Exact information on all'datails oannot be given, as some points have slippad our memory. For this raason; all figures elven in this report are to be secepted with resorwe.

29 metal bars rere fititea to the drum (see diagram).

GA Fkgeflaggpidjxbmioouhshywt

These bars were numbered 1 to 26 and B1, 82 and. 33 . on bars 1 to 26 the letters of the alphabet were oylioally arranged, in alphabetical order. Bars B1 to B3, the so-oallea "dumy strips" ((Blenderstretfen)), bore amall ciroles at 8 or 9 different points. All the metai bars but one were covered up by the meohine lid. Under the windom in the lid ((through whith ond of the bara marked with an alphabet appeared)) the aypher alphabet. ca was insoribed. The olear letear wes looked up on the metal bar whioh happoned to be viaible at the time; and sibstituted by the cypher letter ocourring below. It ((on the 11d)). Deqypherment was effected by the reverse process. The drum with the bars tiarned on its own axcls and was made to move by the depression of a key. For each depression of the key the drum gave 1, 2, 3 or 4 kicks. The movement of the arum was cointrolled by the 3 pin-wheels A, B and C. These pin-whesls were fitted with variable pins and had periods of 23. 24 and 25. If none of the pins on the pin-wheels was in the "effeotivell pooition, then the drum gave one kick; if one of the pins on any of the whe日ls was "affeotiven, the arum geve twa kicks; for two "effeotive" pins, three kicks; for threa-"aff totiven pins four kioks. If a duny bar appeared in the frindor on the lid, a latter ooming below one of the olricus on the dumiy bar wias inserted In the text as a dumy. The letter to be enoyphersa was then encyphered. after anothor depression of the key. The period of the meohine

. -6

TICOR $/ 2-118$

Fas $23 \times 24 \times 25 \times 29 \sim 4 \times 105$. The following oould give the daily key:- .1) Arrangement of the netal bers on the drum if. 2) Pinmsetting of the three wheels A, B and C. 3) Cypher eiphabet GA. The folloring was the setting for the meesage keys1) Initial position' of drum \mathbb{W}. 2). Initial position of the pinFheels A, B and C : The following remarks may be "made on the security of oypher-maohine $440 ;-$ is the machine was never used, Fe have no results of recent examination of its seourity to provide. Resplts obtainea in 1939 were ae follows:-

1) Owing to the eestricted number of alphabets used, ' 10 massages on the same setting are suffioient to solve and reoonstruct the mahine.
2) A direot orib does not enable one to reoonstruot the machina ae, owing to the dumides, it is not possible to line up the clear text with the aypher text aocurately enough.
3) An isolated cypher message oannat be broken.
4) Neither' atersotype beginnings and endings, nor parailel pieces. of text are oomprocileing.

Thus, from resulto obtained at the time, it mould appear' that the machine had a relatively high degree of sedurity, fle do not know why it was not introduoed. Gypher machine 440 went through several stages of developnent before it took on its definitive form. originally the drwa remained stationary at every depreseion of the, key, of gave one kiak. Dunmies were not intended at firet. For a time the maohine was fittea with an eutomatic marse transuitter. There was a key under each letter in tha aypher alphabet. If thie key wera prassed, it caused the automatic transcrission of this aypher lettor by operating a sliding oontaot which bruehod past morsemsignals let in flush ((with the surface elong which the sliding contact brushed)): We dropped this automatio trensmisision es it was too diffioult to keep to fivemletter groups.

Solution of Jepanese Diplomatio Nressages

In the gection dealing with JiSAN (Head of Section Oblt. Dr: aDLER), a few syraightforward oodes and simple recyphering systems were woricsd on and partiy solved, Details of these operations are unknown to us.

Prof. Dr. FRiNZ's oryptanalytio seotion worked 'on the following Japaneise recyphering gytems:

1) KOKOK messages: Messages with KOKOK, GAGAG eta, as indicatorgroups produced numarous spilt-repaits, especially at the beginning of messages, is the relation botween the number of vorrals and the number of oonsonante was fairly exaotly $50: 50$, it was suspeoted that a 2 -letter vorel-oonsonant or oonsonantvowel code was used. dbout, 20 'KokoK' messages were then witten down one beneath the other, and the colurans containing the minimim - nuriber of devaitions, among adjacent bigrans, from the vowelconsonant or consonant-vowel forin,' were aligned together. This geve a transposition. length of'19. This transposition was the same for all indiontor-groups and remained so for months at a time:
2) So-called "Indioator-group mearages" (Jं3).

Right at the stort of our investigations, 2 messages on the PARIS-TOKIO link were disoovered, of whioh the seoond Was a rapeat of the first, with elight dfferenoes. Fe ware able to solve this pair of messeges; the solution wis facilitated iy the fact that the basio ocde $=$. the so-Dalled In code - was known.' It was a 2 -letter code reqgheired by : transposition; in the trans, osition oages, the firet ten roms also oontained blanks. The other messages with the same indioator aupplied the basis of the aotual oode underiying these indicator-groupis. With thie knowledge of this bosis, other indicator-groups could then be worked on suoceesefulity. On an aveirage, 3 new indicator-groupa appeared. every day. The a tenails remained in foroe for 10 daye on an average. Then the bisio code happened to ohange, the new code pas discovered by comprowises that ocourred.

After a yoer had gone b_{f}, the same indicator-groups recurred, Transposition systens and etencile were simply derived from those used in the previpus $y \in a r$.

For the solution of these neseages, the bigram apparatus whas successfully introduoed at Chi.
3) "KiIGUN" and "RIRUGUN".

TWO attempts were made to solve the Japanese 'ettache massages, but both were unsucoessful. As Par as I con remomber, nothing was discovered whiah might serve as a basis for a. break-in.
4) Japanese machine

A few years ago, the German Foreign office broke the Japaness maohtne messages, and construoted a machine of identical function to the Japaneae one. When it was no longer

to road the traffic, owing to alteretions in the maohine or to e differient method of use, work on these.lessages was disoontinued. In November, 1944, work was reslumed by Biaurat SIEINBERG, bit could not bo conoluded. It emerged, however, that the recypherment prinolple hed remined the sams.
5). . Indicator-groups "FBVAZ" and "CTPOL"

All I I can reaall of the work on, and solution of, messiages whose indioator-groups were geneirally "Frgyan" or CIFOL" is that the bystem consieted of reoypherwent, by substitution tables, of a besio code whioh aiso oontained words in F / I : . The oontents of the messages were of a oonmeraie. 1 nature.

Translator: J.M.E.

The Solution of Polish Attaohe Messages

about $2 \frac{1}{2}$ years ago, when the oryptanalytic section took over work on Polish attach traffio, the subtractor used for reayphering was read off a figure-table horizontaliy and vertioaliy. The table consisted of 24 'IInes, eaoh oontaining 26 5-figura groups. In the margin of each table there were 100 different figurebigrams from 00 to 99 in hatted order. Before each nem $11 n e$ or oolumn the appropriate margin-bigrom from the table was inserted in the message text as an indicator. is the enqupherers usualily read off the subtractor horizontaily and vertically, in a serpentine fashion, the shape of the table copula be reconstruoted actually before the reoovery of the book groujs. "In this way the Fhole of the engyphered material could be lined up together.in depth and the reayphering groups "stripped" without any difficuity. We thus bloceeoded in reconstruoting. the code on a relative basis. The oode showed a great nucber of groups of high frequency, and was thus particularly well suited for breaking the regypherment on a very small depth. isfter a sexies of tables had been reconstructed in this way. this method of solution suddeniy failed us, Neither did the known' series of indidators eppear any more. We presumed that the subtractor was now read off the table in another way. As we had bot the book and many indioators ocourred so fréquontly that wex able to break messages recyphered on the same key, a study of the solved pieces of subtractor, for example, showed that the relative figure obteined for the 12th book-group after one indicator wes identioal with the relative figure obtained for the 7th book-group after another indiantor. From this it was oonaluded that the supposed atenoil had lain In suoh a position with both indicators thet, in the first case, the 12th hole had lain in the position on the table where the 7th group Iay in the second oase,. The Indioator and the oheck-group 1ndjoated the comordinates of the top left-hand and bottom right-hand oorners. If, with two dyfferent indicators, the stenoil was moved only one digit to the right, then three digits of each relative figure for the seoond indicator were already obtained. from the relative figure.for the first indiaator. Thus, by
/tedious

SICON/ $1-113$

tedtous and alose work, stenoil, table and marginmbigrars were reoonstruated, This work had to be oarried out. afreah for each new stenoil, as the stenolls were independent of each other. When the firat stenctl was solved, we-were also able to restrict the relative basis of the basio oode to 10 possibilities: Fe used Hollerith machines, to help us. all the material belonging to one stenoil and reoyphering table wes registared on Hollerith cards, 1.e. against evary mesaage group its appropriate indicator and its poeition in the text were noted.

I can no longer remamber details of the process of bolution or charaoterisitics of the clear and aypher texts and cypher conventions. In any cese it would never have been possible to find all. three unknown quantities:-book, stencil and reagphering table - with the scoll amount of raterial on each key. With a. knowledge of the code - and, at that, a oode with very marked frequenay peaks - there wae latterly sufficient traffio to reconstruot table and stencil. If the windows had beon wade of various sizes in one stencil, it would not have been possible to solve the stenail -- even with a known book.

By Fabruary, 1945; roughiy 12 different atenoils and a large number of tables hed been solved. is far as we knew, the book remained the sams all the time.

Translator: K.G.F.

